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Radial distribution functions g of liquid krypton have been computed at several values of temperature and 
density from the Percus-Yevick (PY) and the convolution-hypernetted-chain (CHNC) integral equations 
using two different interaction potentials [the Lennard-Jones (LJ) and Guggenheim-McGlashan (GM)] be­
tween the krypton atoms. The computed g's are compared with the neutron diffraction experimental g's of 
Clayton and Heaton. From the computed g's, the quantities i(s) which are directly proportional to the ex­
perimentally measured quantities (the number of counts/min) have been computed and are compared with 
the experimental values. Besides this, computations have been done to investigate (i) the behavior of the 
computed g's with the variation in the range of integration, (ii) the changes in the computed g's with the 
long-range part of the interaction potential, and (iii) the cause of irregularities in the experimental g's. The 
g's computed with the CHNC equation and LJ potential with constants due to Beattie et at. are in good 
agreement with the experimental g's except near the critical temperature. The effect on the computed g's of 
varying the long-range part of pair potential is small. The major cause of the irregularities in the experi­
mental distribution functions is inherent in the experimentally measured intensity curves and not in the 
truncation error. 

I. INTRODUCTION 

IN a previous paper1 we presented the results of 
computations of radial distribution functions g of 

argon fluid from the Percus-Yevick2'3 (PY) and the con­
volution-hypernetted-chain4"7 (CHNC) integral equa­
tions. In this paper we are presenting the results of 
similar computations for krypton. The computed g's 
are compared with the experimental g's from the neu­
tron diffraction experiments by Clayton and Heaton.8 

In the case of argon, the experimental g's were mostly 
obtained from the x-ray diffraction experiments.9 

Since our purpose is to reproduce the experimentally 
determined g from the theoretical computations, it is 
necessary that we use an interatomic potential for 
krypton which is as close to the real potential as pos­
sible. Several forms of the semiempirical interatomic 
potentials have been proposed for krypton10 just as in 
the case of argon. However, the interatomic potential 
for krypton is not known as accurately as for argon. 
We have selected two forms of interaction potentials 
for the computations of g. They are the Lennard-Jones 
(LJ) potential with constants determined by Beattie 
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et al.n and the Guggenheim-McGlashan12 (GM) poten­
tial which has been constructed from the GM potential 
for argon13 using the correspondence relation with 
critical constants. In selecting the values of constants 
for the LJ potential, we have depended on our experi­
ence with argon where we found that the LJ potential 
used for argon was not sufficiently deep. Several sets of 
values14 for the constants of the LJ potential for krypton 
have been proposed by different authors on the basis of 
their analysis of the data obtained from the transport 
and crystal properties of krypton. The set due to 
Beattie et al. is the best compromise in the sense that it 
is closest to all the other sets due to other authors 
mentioned in Ref. 14. 

The integral equations have been solved for different 
ranges in order to study the effect on the distribution 
function and also on the computed thermodynamic 
quantities. We have also studied the effect of varying 
the long-range part of the GM potential by giving 
different values to X [see Eq. (A4)] on the distribution 
function and the thermodynamic quantities. 

In Sec. II we have briefly discussed the integral equa­
tions. In Sec. I l l we have described the computed dis­
tribution and intensity functions, their comparisons 
with the experimental curves, the effect of changing the 
range of integration, and the variation of the long-range 
part of the pair potential on the distribution function. 
The results of computation and discussion about the 
irregularities in the experimental g's, and the final con­
clusions, are given in Sec. IV. The potential functions 
are given in the Appendix. 

11 J. A. Beattie, R. J. Barriault, and J. S. Brierley, J. Chem. 
Phys. 20, 1613 (1952). 
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(London) 225, 456 (1960). 

14 E. Whallay and W. G. Schneider, J. Chem. Phys. 23, 1644 
(1955); E..A. Mason, J. Chem. Phys. 32, 1832 (1960); D. D. 
Konowalow and J. O. Hirschfelder, Phys. Fluids 4? 629 (1961). 
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II. THE INTEGRAL EQUATIONS 

The pair of equations15 

and 
g(r) = e-fo(r)+Ntr)+B{r) (2.1) 

^(*0=»[5(ftOT/{i+»[5(*/)]} (2.2) 

give g(r) exactly. In these equations <f>(r) is the pair 
potential, N(r) and E{r) are the contributions jlue to 
nodal and elementary diagrams16 respectively, N(k') is 
the Fourier transform of N(r), G{k') is the Fourier 
transform of G(r), which is the correlation function 
(g(r) — 1), n is the macroscopic density (number of 
particles per unit volume) and ft is equal to 1/kT. The 
above pair of equations can be solved if we know another 
relation between N(r) and E(r). We write E(r) in 
terms of S(r) (where S(r) is the contribution due to 
simple diagrams16 and is equal to the sum of the nodal 
and elementary diagrams),1 and obtain 

E(r) = Z - + - + . . . , 
L2! 3! J 

(2.3) 

where Z is an unknown function of r, /3<t>, and density 
such that Eq. (2.3) holds. The advantage of introducing 
Z is to regard it as a parameter for the purpose of ob­
taining approximate integral equations, for when we 
set Z equal to zero, Eq. (2.1) becomes 

g= -0*+2V (2.4) 

and when we set Z equal to — 1, Eq. (2.1) becomes 

*=<r"( l+iV) . (2.5) 

Equations (2.4) and (2.5) in conjunction with (2.2) 
give the CHNC4"7 and PY2'17*18 equations, respectively. 
Writing the equations in this form shows that equating 
Z to any values between 0 and — 1 would have as much 
validity as the PY and CHNC equations. At low tem­
peratures for LJ-type potentials, Z equated to zero 
gives better distribution functions.1'18 In fact a com­
parison of the computed g's from the PY and CHNC 
integral equations with the Monte Carlo computations 
of Wood, Parker, and Jacobson19 at 126°C for argon 
suggests that a value of Z slightly greater than zero 
might give even a better computed g than the CHNC 
approximation. This is so because the CHNC g is 
bracketed by the PY g and the Monte Carlo g} This 
will also be seen from our comparisons of the computed 
g's with the experimental g's at low temperatures for 
krypton and will be discussed in the next section. A 
similar comparison of the computed g's by Broyles 

16 See Ref. 4, Eqs. (11a) and (29). 
16 See Ref. 4 or 1 for definitions. 
17 G. Stell, Physica 29, 517 (1963). 
18 L. Verlet and D. Levesque, Physica 28, 1124 (1962). 
19 W. W. Wood, F. R. Parker, and J. D. Jacobson, Nuovo 

Cimento Suppl. 9, 133 (1958). 
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FIG. 1. The computed g's with the GM potential and the 
CHNC and PY equations at 117°K. The neutron diffraction points 
are due to Clayton and Heaton. 

et al.20 with the Monte Carlo g's of Wood and Parker21 

for densities of argon (naz= 1, where n is the density of 
particles and a is the value of r where the potential 
crosses the zero axis) 2.53X10"2 atoms/A3 or less show 
that an approximation in which the value of Z is 
somewhat greater than —1 will give better g's. The 
value —0.7292, which is the ratio of the contribution 
due to two-field-point elementary diagrams to that due 
to the two-field-point composite diagram for hard 
spheres,22 would give a better approximation for hard 
spheres as well as for LJ-type potential at high tempera­
tures. This is so because this value of Z considerably 
improves the value of the fourth virial coefficients (for 
hard spheres) computed from the pressure equation, 
and also gives better values for the fifth and sixth virial 
coefficients than are given by the approximation22 

Z= — 1. The improvement shown by the approximation 
Z= —0.7292 in the values of the fourth, fifth, and sixth 
virial coefficients means that this approximation will 
take care of the elementary diagrams at least up to four 
field points more accurately than the PY approxima­
tion. Nothing can be said about the five-or-more-field-
point elementary diagrams, as the seventh and higher 

20 A. A. Broyles, S. U. Chung, and H. L. Sahlin, J. Chem. Phys. 
37, 2462 (1962); A. A. Broyles, ibid. 35, 493 (1961). 

21 W. W. Wood and F. R. Parker, J. Chem. Phys. 27, 720 (1957). 
22 P. Hutchinson and G. S. Rushbrooke, Physica 29, 675 (1963). 

G. S. Rushbrooke and P. Hutchinson, ibid. 27, 647 (1961). For the 
sixth coefficient see G. S. Rushbrooke, J. Chem. Phys. 38, 1262 
(1963). 
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FIG. 2. The computed g's with 
the LJ potential and the CHNC 
and PY equations at 133 °K. The 
neutron diffraction points are due 
to Clayton and Heaton. 
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virial coefficients are not known. A study of the highest 
density (naz= 10/9, or 2.82X10-2 atoms of argon/A3) 
distribution function computed by Broyles et al.20 

shows that a value of Z greater than — 1 will give poorer 
agreement with the Monte Carlo curve21 than Z= — 1. 
Since the PY curve is bracketed everywhere by the 
Monte Carlo and the CHNC curve, it follows that a 
value of Z less than — 1 will probably give a better g 
for this case. However, there is no simple criterion to 
determine the approximate value of Z except compari­
son of the computed results with some known distribu­
tion function. A value estimated from such a compari­
son will give a better approximation over a certain 
range of temperature and density only. 

III. THE COMPUTED DISTRIBUTION FUNCTIONS 

A. Computed <7's and Their Comparison with 
the Experimental g's 

Radial distribution functions of liquid krypton have 
been computed in the convolution-hypernetted-chain 

(CHNC) andPercus-Yevick (PY) approximations (Z=0 
and Z= — 1, respectively). The method of computation 
is described in Refs. 20 and 23. Since the integral equa­
tions are solved by a process of iteration, some sort of 
measure is required in order to estimate the convergence 
of the solution obtained. For this purpose the root-
mean-square value of the change in the estimate of H 
is denned by the relation,23 

r 1 M -|!/2 
rms= - £ {Hin(jA)-Hout(jA)}* , (3.1) 

LM J=O J 

where A is the interval of numerical integration. The g 
is related to H for the PY equation by20 

£PY= (1+tfpyr-1) exp ( -0 /* r ) , (3.2) 

and for the CHNC equation by20 

gcHNc=expCffcHNcr-1) exp(—(j)/kT). (3.3) 

23 A. A. Kahn, Ph.D. thesis, 1963 (unpublished). 
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The subscripts "in" and "out" on H correspond to the 
trial H and the H which is obtained from this trial H, 
respectively. 

The computations have been done near the critical 
temperature (Z,

C=209.4°K) and below the critical tem­
perature. All the densities are higher than the critical 
density (wc=6.53X10~3 atoms/A3). Two different inter­
action potentials, (i) the Lennard-Jones 6-12 potential 
with constants due to Beattie, Barriault, and Brierley11 

and (ii) the Guggenheim-McGlashan potential (see 
Appendix) have been used. The computed g's are 
plotted in Figs. 1-8. 

From the g's we have computed the quantity i(s) 
which is equal to [7(^)/70]—1, where I(s) is the total 
intensity of scattering (number of counts/min) at the 
angle 20 from the direct beam, and I0 is the constant 
intensity of scattering at large angles. The variable s is 
given by the relation 

s=4:Tk=4:Tt(sm6)/\] = k'/4Tr, (3.4) 

where 0 is half the angle of scattering and X is the 
wavelength of the neutrons.24 The intensity function 
i(s) is related to g(r) by the equation25 

si(s) r 
= 47ra / 

Jo 

r\jg(r)-— 1] sinsrdr, (3.5) 

where n is the macroscopic density of particles. The 
computed i's are plotted against k in Figs. 9-17. 

The quantities E'/nkT, P/nkT, and nkTK, where E' 
is the internal potential energy, P is the pressure, and 
K is the isothermal compressibility, have also been 
computed from the g's. The quantities26,27 E', P, and K 
are given by the equation 

E'/nkT={2Tm/kT)\ <t>gr2dr, F 
Jo 

(3.6) 

P/nkT^l-(2irn/3kT) <f>fgrzdr, (3.7) 

and 

nkTK 

f t'g 
Jo 

/»oo 

= 1-Awn (l-g)r2dr, 
Jo 

(3.8) 

respectively. For the case of the GM potential, Eq. 
(3.7) is replaced by the equation28 

P/nkT=l-(2im/3kT) <j>'grHr 
Jo 

+ (2T/3)d*g(d+), (3-9) 
24 Wavelength of the neutrons used by Clayton and Heaton 

was 1.05 A. 
25 N. S. Gingrich, Rev. Mod. Phys. 15, 90 (1943). 
26 R. L. Hill, Statistical Mechanics (McGraw-Hill Book Com­

pany, Inc., New York, 1956). 
27 L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-

Wesley Publishing Company, Inc., Reading, Massachusetts, 
1958). 
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FIG. 3. The computed g's with the GM potential and the 
CHNC and PY equations at 133°K. The neutron diffraction 
points are due to Clayton and Heaton. 

where g(d+) is the value of the distribution function on 
the right side of the vertical barrier of the GM potential. 
In the above equations, N is the total number of par­
ticles in the system, n is the number of particles per 
unit volume, and <j> is the interatomic potential. Table I 
contains the computed energies, pressures, and com­
pressibilities. The range of integrations (R) for solving 
the equations and the rms values are also given in the 
table. The computed thermodynamic quantities, par­
ticularly the pressure and the compressibility, are so 
sensitive to small changes in the g and also the range of 
g (especially the compressibility) that the computed 
values in many cases can be considered good only for 
comparative study. 

For the purpose of comparison, the g's computed from 
the two integral equations and the experimental g's 
determined from the neutron diffraction experiments by 
Clayton and Heaton have been plotted on the same 
figures. In plotting the curves, care has been taken to 
show distinctly the two computed values and the ex-
peirmental value of g at a given value of r (r is in ang­
stroms). This was necessary in view of the rapid rise 
and fall of the g's, particularly at the first peak. The g's 
computed from the two different interaction potentials 
are plotted on separate graphs. Figure 18 shows the 
two potentials compared to each other. We have not 
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been able to get the CHNC case-I-type1,28 solutions 
with GM potential in the case of r = 1 5 3 ° K and T 
= 133°K. The solutions obtained at 117°K with the 
GM potential and with the PY and CHNC equations 
are poorly converged. Since the GM potential has a 
vertical barrier at 3.4 A, the value of g is zero for 
values of r < 3 . 4 A . The value on the right side of the 
barrier is denoted in the tables by g(d+). The height of 
the first peak for the GM potential is lower than that 

28 It has been found that the CHNC equation gives two different 
kinds of distribution functions as solutions. One of them ap­
proaches the value one for large values of r from above, i.e., from 
values greater than one. The compressibility computed from this 
g is always positive. We consider this kind of g the valid solution 
and designate it as case-I g. The other g approaches the value one 
for large values of r from below, i.e., from values less than one. 
This g gives negative compressibility. We consider this kind of g 
the invalid solution and designate it as case-II g. See Sec. I l l B 
and Ref. 1 for further information on case-I and case-II g's. 

for the LJ potential in all the cases.29 (We did not get 
g's with the GM potentials at 210°K.) The first peak 
occurs at 3.9 A for both the potentials (we are not 
considering the GM and CHNC, case-II solutions) ex­
cept for the cases of r = 2 1 0 ° K , LJ potential and the 
PY equation and also for T=183°K and r = 1 1 7 ° K 
with the GM potential and CHNC equation. In these 
cases, the peak is at 4 A. In Table I are given the posi­
tions and the heights of the first and second maxima 
and minima. 

A comparison of the g's computed with the GM 
potential using either of the integral equations with the 
experimental g shows that the agreement is not good 
at the first peak for the cases of T= 117°K, T= 133°K, 
and r = 1 5 3 ° K . The computed first peaks are too low. 
In the 117°K case, the agreement between the GM-

29 See Ref. 1. 
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TABLE I. Range, rms, energies, pressures, compressibilities, positions and heights of first and second maxima and minima in g (r) and 
g(d+). T is the temperature in degrees Kelvin, n is the number of particles per cubic angstrom, Pt=potential, Eq. = equation, n is the 
position of the first maximum in g, r% is the position of the first minimum in g, r% is the position of the second maximum in g, r* is the 
position of the second minimum in g, g (d+) is the value of g on the right side of the barrier of the GM potential. 

T nXW Pt Eq. R(A) 

Ef P 

nkT nkT nkTK n g(ri) ri g(r2) gin) r* g(ri) g(d+) 

210 0.75 LJ PY 20 5.7X10"4 

Neutron diffraction experiment 
183 1.30 LJ PY 30 4.0X10"3 

LJ CHNC 30 1.7X10-3 

GM PY 30 3.8X10"4 

GM CHNC 30 2.5X10~4 

Neutron diffraction experiment 
1.32 LJ PY 30 1.4X10"3 

LJ CHNC 30 1.5X10"3 

153 1.54 LJ PY 30 2.7X10"4 

LJ CHNC 30 3.6X10-3 

GM PY 20 4.0X10"3 

GM CHNC II 30 2.4X10-2 

Neutron diffraction experiment 

133 1.66 LJ PY 30 1.2X10~3 

LJ CHNC 30 7.0X10"3 

GM PY 30 6.0X10"3 

GM CHNC II 30 1.9X10-2 

Neutron diffraction experiment 
117 1.76 LJ PY 30 7.9X10-3 

LJ CHNC 30 8.2 X10~3 

GM PY 30 1.2 X10"1 

GM CHNC 30 1.3X10-2 

Neutron diffraction experiment 
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CHNC curve and the experimental points is better 
near the first and second minima than elsewhere, while 
the GM-PY curve is close to the experimental points 
at the second maxima (see Fig. 1). In the 133 °K case, 
both the computed curves with the GM potential show 
fairly good agreement with the experimental curve 
near and beyond the first minima. In this region the 
GM-CHNC curve is bracketed by the experimental 
points and the GM-PY curve (see Fig. 3). For the case 
of 153 °K computed g's, the situation resembles that of 
the 117°K case (see Fig. 5). In the case of 183°K, the 
PY and CHNC equations with the GM potential give 
g's which are very close to each other, and they are also 
in good agreement with the experimental points at the 
first peak. The location of the first peak for the GM-
CHNC case is at 4 A (while in other cases it is at 3.9 A), 
which is in agreement with the location of the experi­
mental peak (see Fig. 7). I t may be noticed that there 
are irregularities in the experimental curve near the 
first minimum and the second maximum which make 
the comparisons with the computed curve difficult. We 
shall discuss these irregularities of the experimental 
curves in Sec. IV. 

The distribution functions computed using the LJ 
potential are in better accord with the experimental 
curves in all the cases than those computed with the 
GM potential. For the 117°K case, the LJ-CHNC curve 
agrees better at the first peak with the experimental 
curve than in any other case. The agreement near and 
beyond the first minimum is fairly good. In this region 
the LJ-CHNC curve lies between the experimental 
points and the LJ-PY points (see Fig. 19). For 133 °K 
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and PY equations at 117 K. The neutron diffraction points are 
due to Clayton and Heaton. 
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the agreement between the experimental points and the 
LJ-CHNC curve near and beyond the first minimum 
is even better than in the case of 117°K. In this region 
the LJ-CHNC curve lies between the LJ-PY curve 
and the experimental points except beyond 9 A. There 
the experimental points are almost on the LJ-CHNC 
curve. The experimental points in this case are 
higher than the LJ-CHNC curve and lower than the 
LJ-PY curve at the first peak (see Fig. 2). At the 153 °K 

case the agreement between the LJ-CHNC curve and 
the experimental points is very good. The LJ-PY curve 
is very close to the LJ-CHNC curve in this region. The 
experimental first peak is a little lower than the LJ-
CHNC peak. It is also a little shifted to the right of the 
LJ-CHNC and the LJ-PY peaks. The LJ-PY peak is 
much higher than the experimental peak (see Fig. 4). 
At 183 °K, the experimental peak is close to 4 A, while 
both the LJ-PY and LJ-CHNC peaks are near 3.9 A. 
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FIG. 15. The computed i's with 
the LJ potential and the CHNC 
and PY equations at 183°K. The 
neutron diffraction points are due 
to Clayton and Heaton. 
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Also, the experimental peak is lower than the LJ-CHNC 
peak, which in turn is lower than the LJ-PY peak. The 
LJ-PY and LJ-CHNC curves are very close in this 
case and in good agreement with the experimental 
points (see Fig. 6). 

From the study of computed g's discussed above, it 
is clear that the LJ-CHNC curves are in better agree­
ment with the experimental points than any other 
curves. Since the CHNC and PY approximations corre­
spond to Z=0 and Z= —1, respectively (see Sec. II), 
it appears, from our comparisons of the LJ-CHNC and 
LJ-PY curves with the experimental curves in the cases 
of 117 and 133 °K, that if we solve for g in an approxi­
mation in which Z is slightly greater than zero, then 
we may get even better agreement with the experi­
mental points than the CHNC approximation for re­
gions beyond 4.6 A. But such an approximation may 
make the agreement at the first peak poorer than we 
get from the Z=0 approximation. From this it follows 
that no further improvement in the computed g's can 
be expected just by approximating Z to a constant 
slightly greater than zero. However, an improvement 
can be obtained if we obtain approximate values of Z 
as a function of the distance.^0 

At 210°K, we obtained solutions with the LJ poten­
tial and the CHNC and the PY equations for a range 
of integration of 11 A. The PY and the CHNC solutions 

30 Verlet and Levesque (Ref. 18) have computed the ratio of the 
contribution of the two-field-point elementary diagrams to the 
two-field-point composite diagram for various separations of the 
reference points for hard spheres. This ratio may serve as a good 
value of z as a function of r for cases close to hard spheres. Such 
ratios can be determined for the LJ or the GM-type pair poten­
tials using Monte Carlo methods. However, this is expected to 
give good results as long as the contribution due to more-than-
two-field-point elementary diagrams is negligible. The extension 
of such calculations to diagrams with a large number of field 
points would be very cumbersome. 

are very close to each other. The LJ-PY curve for 
R=ll A has been plotted in Fig. 8. We could not get 
solutions with the CHNC equation for larger ranges. 
With the PY equation we got a solution for a range of 
20 A also, but when we tried to extend the range to 
30 A we did not get a well converged solution. The in­
crease in range in this case increases the g almost 
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FIG. 16. The computed ^'s from the GM potential and the 
CHNC and PY equations at 183°K. The neutron diffraction 
points are due to Clayton and Heaton. 
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everywhere (see Fig. 8). I t appears that a well-converged 
solution for a longer range will result in a g with a little 
higher value than the g obtained for the range of 20 A. 
Although we could not get the solutions for the CHNC 
equation for longer ranges than 11 A, we expect the 
CHNC solutions for longer ranges to be close to the 
PY solutions, as in the case of 11 A. A comparison of 
the computed curves with the experimental points 
shows that there is some agreement so far as the loca­
tion of the first and second maxima is concerned. There 
also may be agreement in the location of the first 
minimum if the experimental curve is smoothed out in 
that region. Otherwise the agreement is very poor. At 
this temperature, minor changes in the potential func­
tion cannot cause much difference in the computed 
curves. Computed g's for argon1 near the critical tem-
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FIG. 18. The Lennard-Jones (with constants due to Beattie 
et al.) 6-12 and the Guggenheim-McGlashan potential for krypton. 
The distance is in angstroms and the energy in degrees Kelvin. 

perature (at densities lower and higher than the critical 
density) are also not in agreement with the x-ray dif­
fraction curves.9 A comparison of the neutron diffraction 
curve for krypton and the x-ray diffraction curve for 
argon in the neighborhood of the first peak shows that 
while the neutron diffraction shows a sharper and much 
higher peak than the computed peaks, the x-ray dif­
fraction shows a smeared-out and much lower peak 
than the computed peaks.1 The computed curves for 
krypton and the argon are similar to each other. From 
this it appears that both the neutron diffraction and 
the x-ray diffraction experimental g's for krypton and 
argon, respectively, near the critical temperature are 
not as reliable as the computed g's from the integral 
equations. 

Figures 9 and 11 show the computed intensity (i) 
curves with the LJ potential, the experimental i's for 
the cases of 117 and 133°K, respectively. The computed 
curves are in good agreement with the experimental 
points. In the region lying between the first minimum 
and the second maximum the experimental curves are 
markedly shifted towards the left relative to the com­
puted curves. Also, the agreement between the com­
puted and experimental curves is poor in the neighbor­
hood of ^ = 0.5A_1. The fourth experimental peak is 
very much shifted towards the left. At 153 °K, the 
experimental points are too high near the third maxi­
mum, and the fourth maximum is shifted towards the 
left of the fourth maximum of the computed curves 
(see Fig. 15). For these three cases, the computed 
curves obtained from the CHNC equation show an 
over-all better agreement with the experimental curves 
than the curves computed from the PY equation. The 
experimental curves become out of phase with the 
computed curves near the third maximum in the cases 
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FIG. 19. The computed g's with the 
LJ potential and the CHNC and PY 
equations at 117°K. The neutron dif- }#g 1 
fraction points are due to Clayton and 
Heaton. 
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of 183 and 210°K. The agreement between the experi­
mental curve and the computed curves is fairly good 
up to *=0.31 A"1 for 183°K case, but for the 210°K 
case the agreement is only qualitative (see Figs. 15 
and 17). 

In all the cases discussed above the computed i 
curves for small values of k pass through a minimum 
and again start rising. As the temperature increases the 
value of i for very small values of k becomes quite high 
and, at the critical temperature, this small-angle scat­
tering is much larger than that at the first maximum. 
The experimental measurements were not made at very 
small angles, and the values of i for small k were ob­
tained by extrapolation.8 Since the zero-angle scattering 
intensity i(0) is related to the compressibility K by 
the equation, 

l+i(0)=nkTK, (3.10) 

it might be thought that an experimental estimate of 
the isothermal compressibility K may be of help in the 
determination of the scattering intensity in the neigh­
borhood of k=0. However, it turns out to be of not much 
use. In Sec. IV we have described the effect of the values 
of i for small values of k on the g's. 

The agreement between the experimental i curves 
and the curves computed with the GM potential is not 
as good as it is for the curves computed with the LJ 
potential (see Figs. 10, 12, 14, and 16). 

A comparison1 of the pressures and compressibilities 
computed from the PY and CHNC equations shows 
that the PY equation gives higher pressures and lower 
compressibilities than the CHNC equation. The en­
ergies computed from the PY equation with the LJ 
potential are lower than those computed from the 
CHNC equation with the LJ potential. A similar com-
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TABLE II. Range, rms, energies, pressures, compressibilities, positions and heights of first and second maxima and minima in g(r) 
and g(d+). T is the temperature in degrees Kelvin, n is the number of particles per cubic angstrom, Pt = potential, Eq. = equation, n 
is the position of the first maximum in g, r* is the position of the first minimum in g, 7*3 is the position of the second maximum in g, 
n is the position of the second minimum in g, g (d+) is the value of g on the right side of the barrier of the GM potential. 
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7.4 
7.6 
7.3 
7.5 

g(fS) 

1.0807 
1.0847 

1.1222 
1.1343 
1.1177 
1.1281 
1.1288 
1.1294 
0.9545 
0.9648 
1.0015 

1.2005 
1.189 
1.0324 
1.094 

1.245 
1.068 
1.198 
1.15 

n 
10.1 
10.1 

9.2 
9.2 
9.5 
9.4 
9.4 
9.4 
9.2 
9.4 
9.5 

8.9 
9.1 
9.3 
9.2 

8.8 
9.2 
8.8 
9.1 

g(r4) 

0.9922 
0.9925 

0.9675 
0.9541 
0.9705 
0.9625 
0.9619 
0.9627 
0.9403 
0.9026 
0.9035 

0.9129 
0.931 
0.8803 
0.899 

0.883 
0.867 
0.905 
0.89 

g(d+) 

1.076 

1.276 
1.09 

parison could not be made for the case of the GM 
potential, since we did not get the CHNC case-I solu­
tions with the GM potential for the cases of 153 and 
133°K, and the convergence of the solutions obtained 
at 117°K is not good enough for such a comparison 
(see Table I). 

In the case of 183°K we increased the density by a 
small amount (from 1.30X10-2 to 1.32X10"2 atoms/ 
A3); the result was an increase in the pressure and a 
decrease in the compressibility. However, this effect is 

more pronounced for the CHNC equation than the PY 
equation, as can be seen from the Table I. 

B. Effect of the Range of Integration on the 
Distribution Functions in Solving the 

Integral Equations 

Table II shows the positions and values of the first 
and second maxima and minima of the g's for ranges of 
integration (R) other than those included in Table I. 
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FIG. 20. The computed g's at 
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It also gives the values of the thermodynamic quan­
tities computed from the g's obtained for these ranges. 

There is little difference in the g's computed for 20 
and 30 A range. (See Tables I and II for the heights of 
the first and second maxima and minima. We are not 
considering the CHNC case-II solutions.) The differ­
ences in the energies and pressures are small. Their 
differences are mostly due to different degrees of con­
vergence of the g's rather than the effect of range. The 
effect on the compressibility due to change in range from 
20 to 30 A is very large. In the case of 133°K and the 
LJ-PY g for range 20 A, the compressibility is negative31 

and very small (—0.02) (see Tables I and II). The com­
pressibilities for the range of 30 A are much larger than 
those for the range of 20 A. 

At 183 and 210°K, we solved the integral equations 
for the range of 11 A also. In these cases the g's have 
relatively lower maxima and higher minima compared 
to g's for the 20- to 30-A ranges. The energies are lower, 
the pressures are higher, and the compressibilities are 
very much smaller in comparison to the 20- and 30-A 
cases (see Tables I and II). For the 183°K case (LJ-
CHNC, case I) we obtained solutions for the ranges 
of 15 and 16 A also. It will be noticed (see Table II) 
that there is considerable difference in the compressi­
bility even for a change of 1 A in the range. From the 
above we conclude that the g's obtained for a range of 
integrations much less than 20 A are not reliable and 
that the compressibilities are good only for a com­
parative study. 

We obtained CHNC case-II-type1,28 solution at 
183°K for 11-, 15-, and 20-A range with the LJ potential; 
but we did not get a solution for 30-A range. The effect 
of increasing the range is to increase the distribution 
function almost everywhere except in the region close 
to the end of the range, where the shorter range g 
crosses the longer range g's so as to approach 1 (see 
Fig. 20). We obtained CHNC case-II g's in many cases 
Some of them are listed in Table II. Those cases which 
are listed in Table I have also been plotted in the dis­
tribution-function graphs. In those cases we did not 
get corresponding CHNC case-I-type solutions. The 
CHNC type-II g's give negative compressibilities and, 
in several cases, negative pressures also (see Tables I 
and II). With increase in range the compressibility in­
creases in magnitude but continues to be negative. A 
comparison of the distribution functions for the dif­
ferent ranges corresponding to CHNC case-I and case-II 

31 The PY g's and also the CHNC case-I type g's have never 
been found to give negative compressibilities. In this case it 
appears that the range 20 A happens to be such that this as upper 
limit in the integral of Eq. (3.8) favors the values of g less than 
one considerably over those greater than one. This is why when 
the range is increased to 30 A, the compressibility again becomes 
positive and relatively very large. I t may be noticed that the com­
pressibilities computed from the g's of the CHNC case-II type 
never become positive with a change in the range. They become 
more negative as the range is increased (see Table II, particularly 
the case of 183°K). 

solutions shows that as the range increases, the differ­
ence between case-I and case-II g's decreases in the 
region sufficiently far removed from the end of the 
range of either g. 

C. Effect of Varying the Long-Range Part 
of the Potential Function on the 

Distribution Function 

The form of the interaction potential at large dis­
tances for two nonpolar atoms is very well represented32 

by the London dispersion forces10 and is proportional 
to r~6. At low temperatures in liquids, the effect of this 
long-range potential may be quite important. In order 
to study the effects of varying the magnitude of this 
part of potential function, we computed the distribu­
tion functions with the GM potentials for values of 
A/&=0,100, 250, and 300°K besides the value 208.5°K. 
In Fig. 21 are plotted the curves computed from the 
PY equation with the GM potential for values of X/k 
= 0, 100, and 300°K. In Fig. 22 are plotted the g's 
computed from the CHNC equation with the GM po­
tential for values of \/k=0, 250, and 300°K. From these 
figures it can be seen that the effect of changing X/k 
is rather small. The height of the first peak rises with 
the increase33 in the value of X/k. (This does not apply 
to the case of the g computed from CHNC equation for 
\/&=300°K, because this corresponds to the CHNC 
case-II g.) There is irregularity in the g's near the first 
minimum. This irregularity is caused by the abrupt 
change in the potential function at 5.8 A due to giving 
values to X/k other than 208.5°K. It is interesting to 
note that the irregularities in the distribution curves are 
appearing almost exactly at the point where the de­
formation in the potential function takes place owing 
to a change in the values of X/k. Another interesting 
thing is that, for values of X/k less than 208.5 °K, the 
value of g drops from a higher value to a lower value 
as it passes from 5.7 to 5.8 A. It rises from lower values 
to higher values in passing from 5.7 to 5.8 A when the 
value of X/k is greater than 208.5 °K. Since this fact is 
common to g's computed either by the PY or CHNC 
equations, it may be that an irregularity in the exact 
distribution function also shows a peculiarity in the 
potential function very close to that point.34 

There is a small increase in the values of energies 
with the decrease in the values of X/k. The values of 
the compressibilities increase considerably with the 
increase in the value of X/k. See Table III. 

32 For extremely large distances the interaction potential is 
actually proportional to r~7 because of radiation effects (finite 
velocity of the electromagnetic waves). 

33 This may be one factor responsible for higher first peaks for 
g's computed with the LJ potential, since the constant of propor­
tionality in the r~Q term is greater for the LJ potential than that 
for the GM potential. 

34 It, may be that at very high pressures in the liquid state, or 
at high temperatures, the irregularities of the potential function 
do not show up in the distribution function; or it may be weakened 
in prominence and displaced and spread out in position. 
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FIG. 21. The g's computed from 
the PY equation at 183°K with 
the GM potential for values of 
X/£=0, 100, and 300°K.oThe ir­
regularity in g's near 5.8 A is due 
to the abrupt change m the poten­
tial function at 5.8 A because of 
giving values to \/k other than the 
208.5°K. 

IV. THE IRREGULARITIES OF THE EXPERIMENTAL 
g's AND THE CONCLUSIONS 

A. The Irregularities in the Experimental 
Distribution Curves 

A detailed study has been made in order to determine 
the causes of the irregularities in the experimental g's. 
In Ref. 1 we had converted the computed distribution 
curves first into intensity35 / curves (/ versus k curves). 

Then, taking these intensity curves up to those values 
of k (&max=0.7) to which the experimental curves ex­
tended, we reconverted them to distribution curves and 
called them gk. A comparison of the original g's with the 
g/b's showed that there was quite good agreement be­
tween the two cases. There was also no indication of the 
appearance of any wriggles or bumps in gk. In the case 
of krypton, the experimental intensity curve (i versus 
k) extends only up to k equal to 0.6 A"1 or even less. 
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FIG. 22. The g's computed from 
the CHNC equation at 183 °K with 
the GM potential for values of 
A/& = 0, 250, and 300°K. The g 
corresponding to 300°K is of case-
I I tyj>e. The irregularity in g's near 
5.8A is due to abrupt change in 
the potential function at 5.8 A be­
cause of giving values to \/k other 
than the 208.5°K. 

35 The quantity / in Ref. 1 and i(s) is related by the equation /=[ l+^( ' y ) ] / 2 » where / is the atomic structure factor. 
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TABLE III. Range, rms, energies, compressibilities, positions, and heights of first and second maxima and minima in g{r) and g(d+) 
r=183°K, w = 1.3Xl0~2 atoms/A3, GM potential with different values of \/k°K. T and \/k are in degrees Kelvin, Eq. = equation, n is 
the position of the first maximum in g, r?, is the position of the first minimum in g, r$ is the position of the second maximum in g, n is 
the position of the second minimum in g, g(d+) is the value of g on the right side of the barrier of the GM potential. The long-range 
part of the potential is given by — X(4.077/V)6. It starts being effective at r = 5.8 A. 

Eq. 

PY 

CHNC II 
CHNC I 
CHNC I 

\/k 

300 
250 
208.5 
100 

0 

300 
250 
208.5 
100 

0 

R(A) 

20 
20 
20 
30 
20 

30 
20 
20 
30 
20 

rms 

4.7X10-3 

2.9X10-3 

2.7X10-3 

7.3X10"4 

1.6X10-3 

7.3X10-3 

6.1X10-3 
1.8X10-3 
7.0X10-3 
2.7X10-3 

E' 

nkT 

3.289 
3.253 
3.226 
3.181 
3.142 

3.261 
3.320 
3.277 
3.210 
3.178 

nkTK 

2.74 
1.810 
1.33 
0.87 
0.53 

-7 .50 
4.37 
2.78 
1.52 
0.81 

r\ 

3.9 
3.9 
3.9 
3.9 
4.0 

4.0 
4.0 
4.0 
4.0 
4.0 

g(fi) 

2.181 
2.157 
2.142 
2.111 
2.091 

2.082 
2.130 
2.106 
2.073 
2.059 

ri 

5.6 
5.6 
5.6 
5.8 
5.8 

5.6 
5.6 
5.6 
5.8 
5.8 

g(r2) 

0.763 
0.768 
0.774 
0.759 
0.727 

0.768 
0.792 
0.792 
0.759 
0.725 

n 

7.5 
7.5 
7.5 
7.5 
7.5 

7.5 
7.5 
7.6 
7.6 
7.6 

g(n) 

1.141 
1.134 
1.130 
1.126 
1.124 

1.120 
1.156 
1.144 
1.134 
1.133 

ri 

9.1 
9.1 
9.1 
9.2 
9.3 

9.2 
9.2 
9.3 
9.3 
9.4 

g(rd 

0.963 
0.958 
0.956 
0.953 
0.951 

0.954 
0.972 
0.965 
0.955 
0.950 

g(d+) 

1.215 
1.199 
1.191 
1.165 
1.148 

1.212 
1.244 
1.218 
1.182 
1.145 

In this case also we have computed gk for km&x equal to 
0.6 from the computed distribution functions for the 
LJ potential. The PY equation was used for T equal 
to 210°K and the CHNC equation for T=183°K and 
J ,= 117°K. A comparison of these g&'s with the g's for 
T equal to 210 and 183°K shows that the points be­
longing to the gk's follow closely the original g curves. 
There is no indication of any distortion in the gk curves, 
although some of the gk points He on one side and others 
lie on the other side of the g curve. See Figs. 8 and 23. 
But in the case of r=117°K, the gk curve with &max 

equal to 0.6, besides being sometimes on one side and 

sometimes on the other, shows a marked distortion in 
the first trough of the curve in the neighborhood of 
5.8 A (see Fig. 24). In order to see whether this dis­
tortion, and the appreciable difference between gk with 
&max equal to 0.6 and the original g, can be reduced by 
increasing the value of kmaxy we computed gk with &max 

equal to 1.2 A-1, and found excellent agreement be­
tween this gk and the original g, as can be seen in Fig. 
24. From these studies we conclude that the appreciable 
distortion cannot be introduced into the experimental 
g's simply because the experimental intensity curves 
extend at most up to k equal to 0.6 A"1 except for the 

FIG. 23. Curve I is the com­
puted g from the CHNC equation 
and the LJ potential for the range 
of integration 20 A. Curve I I is gk 
which has been obtained from the 
curve I first by converting it to 
intensity curve iQirk) and then re­
converting it to the distribution 
function with the maximum value 
of & = 0.6 A-1. Curve I I I has 
been obtained by replacing the 
part between 5 and 7 A of curve I 
by the experimental values of g. 
Curve IV is the gk obtained from 
curve I I I for the maximum value 
of &=0.6 A - 1 in the same way as 
curve II has been obtained from 
curve I. 
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FIG. 24. The curve I is the g 
computed from the experimental 
intensity curve without applying 
any corrections for zero-degree 
angle scattering. Curve II is the 
computed LJ-CHNC g for R 
= 30 A. Curve III is the gk com­
puted o from curve I I for km&x 
= 1.2 A-1. Curve IV is the gk com­
puted o from curve II for £max 
= 0.6 A""1. Curve V is the g com­
puted from the experimental in­
tensity curve in which theo region 
between & = 0.46 and 0.60 A - 1 has 
been replaced by the computed 
values of intensities from the LJ 
potential and the CHNC equation. 
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liquid at very low temperature. The error introduced in 
the computation of g from i by the equation 

fc=l+-
rJo 

ki(4irk) sm(4wkr)dk9 (4.1) 

due to setting an upper limit on the value of k instead 
of infinity (called the truncation error) is quite in­
sufficient to account for the distortions present in the 
experimental g's. 

We would like to see which part of the intensity curve 
must be modified to cause a change in the distribution 
curve at the place where the distortion in the experi­
mental curve occurs. For this purpose we chose two 
cases corresponding to the temperatures r = 2 1 0 ° K and 
r = 1 1 7 ° K . At r = 2 1 0 ° K there are very large irregu­
larities in the experimental distribution function beyond 
4.7 A. The T= 117°K case has been studied by Clayton 
and Heaton in detail and has a radial distribution func­
tion affected appreciably by the truncation error as has 
been shown above. First we computed the distribution 
function g from Eq. (4.1) using the experimental value 
of i(s). The quantity i(s) is related to the total intensity 
I(s) by the relation8 

of oscillations was magnified in the 210°K temperature 
case (see Fig. 25). The difference for 117°K case was 
small. See curve I, Fig. 24. 

Since the accurate intensity measurements become 
more difficult for very small angles because of the pres­
ence of the primary beam, and also for large angles be­
cause of the small differences between I(s) and 70, we 
have studied the effect on the g computed from the i(s) 
when its values are changed for small values of k and 
when its values are changed for large values of k. For 
the 210°K case the computed values of i(s) from the 
LJ potential and PY equation have been attached to 
the experimental i(s) curve smoothly at & = 0.11 A"1 

(see Fig. 17). With this hybrid i(s), using theoretical 
values for £ < 0 . 1 l A - 1 , and experimental values for 
&>0.11 A -1, g was recomputed. The resultant curve is 
plotted in Fig. 25. The figure shows that the amplitude 
of oscillations is magnified and the curve as a whole has 

risen. 

i(s) = U(s)-Io]/(h-C), (4.2) 

where Jo is a constant intensity at large angles and C 
is a factor which has been introduced for the purpose 
of allowing for effects which are independent of angle 
but cannot be easily calculated.8 However, we have set 
C=0 in Eq. (4.2) for calculating the value of i(s). The 
g's computed by us from the experimental values of 
i(s) were almost the same in form as was obtained by 
Clayton and Heaton in both cases, but the amplitude 

In the 117°K case, the experimental i(s) curve was 
altered for k lying between 0 and 0.1 A"1 by inserting 
the computed values from the CHNC equation and 
LJ potential (see Fig. 9). The g was then computed 
from the new hybrid i(s) and no significant change took 
place. Next we changed the experimental i(s) for k 
lying between 0.47 and 0.60 A - 1 to the values of i 
computed from the LJ potential and the CHNC equa­
tion (see Fig. 9), and again computed g from this new 
hybrid i(s). This g is plotted in Fig. 24. A smoothing 
effect in the g near 4.9 A (where the maximum irregu­
larity in the experimental curve is present) and near 
7.2 A is very clear. However, there is considerable dis­
tortion present in the neighborhood of 5.8 A. I t is 
interesting to note that there is a marked difference 
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FIG. 25. Curve I is the g as computed by Clayton and Heaton 
from the experimental intensity curve by using some suitable 
value of C (see Sec. IV) for the purpose of allowing for effects 
which are independent of angle. Curve II is the g computed by 
us from the experimental intensity curve by putting C=0. Curve 
I I I is the g computed from the intensity curve which is obtained 
by joining the computed (LJ-PY) intensity curve to the experi­
mental curve at ko=0Al A-1. The computed intensity curve 
extends from ^ = 0A_ 1 to k = 0.11 A - 1 and the experimental in­
tensity curve extends from & = 0.11 A - 1 to k —0.6 AT1. The joining 
has been done smoothly. 

between the computed and the experimental values of 
i(s) for k lying between 0.47 and 0.6 A (the difference 
is not only in the magnitude, but also the experimental 
maxima is shifted towards left), and it is near 5.8 A 
that the distortion due to truncation error is at a 
maximum (as discussed before). A marked shift towards 
the left of the fourth experimental maxima relative to 
the fourth maxima of the computed i(s) curves is 
prominent for the 117, 133, and 153°K cases. The 
shapes of the irregularities and their locations in the g 
curves of these cases are also very much alike, as can 
be seen in Figs. 2, 4, and 19. 

From the above considerations it follows that the 
truncation error causes some irregularities in the dis­
tribution function of liquids at low temperatures, yet 
it cannot be the major cause. The major cause of the 
irregularities in the distribution functions is inherent 
in the experimentally measured intensity curves. 

In Fig. 26 we have plotted the intensity curves at 
183°K computed from the LJ-CHNC g (curve I, Fig. 
23). We have also shown the intensity curve which has 
been computed from the LJ-CHNC g modified in the 
region lying between 5 and 7 A by replacing it by the 

experimental values of g (curve III of Fig. 23). The 
difference between these two intensity curves (curves 1 
and 2 of Fig. 26) is small. The differences are of an 
order which can be accounted for by the experimental 
errors. However, both these curves differ very much 
from the experimental intensity curve. (The experi­
mental distribution function is not in agreement with 
the computed g's in the location of the first peak, as 
can be seen from the Fig. 6.) The difference is probably 
too great to be entirely due to experimental error. It 
can be accounted for partly by the differences in the 
experimental and the computed g's in the regions other 
than that lying between 5 and 7 A (particularly in the 
region of the first peak), and partly by errors in meas­
urements. But if we take into consideration the fact 
that the irregularity in the experimental g appears 
rather markedly in the neighborhood of 5 A in the 
cases of 117, 133, 153, and 183°K, and near the second 
maxima in the cases of 117, 133, and 153°K, it seems 
rather unlikely that this is due entirely to experimental 
error. It appears that the irregularities in the experi­
mental distribution functions are due to the presence 
of structure in the liquid. 

The computed g's from the integral equations using 
the LJ and GM potentials are smooth curves. It may 
be that equating Z to a constant value instead of a 

T= 183° K 
n= 1.3x10/^3 

-JV-r-v— ' A 

— — LJ CHNC ( I ) 

x LJ CHNC ( 2 ) 

o EXPERIMENTAL^)! 

° >*-* 

FIG. 26. Curve I is the computed intensity curve at r=183°K 
with the LJ potential and CHNC equation. Curve I I I is the experi­
mental intensity curve and curve II is the intensity curve com­
puted from the LJ-CHNCg which has been modified by replacing 
the part between 5 and 7 A by the experimental g. 
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FIG. 27. Curve I is the LJ potential for krypton. Curve II is 
the potential function which is expected to introduce irregularities 
in the computed distribution functions of the type present in the 
experimental g's. 

function of distance gives a smooth distribution func­
tion when a smooth potential is used. The only way to 
introduce irregularities in the computed g's like the 
irregularities in the experimental g's is to introduce 
irregularities in the potential function. Curve I I of 
Fig. 27 shows an approximate form of the pair inter­
action which would introduce the type of irregularities 
present in the experimental g's into the computed g's. 
Curve I I has been computed from the CHNC integral 
equation using the experimental diffraction data. The 
details of the method of solving the equation for the 
potential are given elsewhere.36 

V. CONCLUSIONS 

From the discussions of the integral equations in Sec. 
I I and the results of computations and their compari­
sons in Sec. I l l and the study of the experimental 
distribution functions, we have been able to derive the 
following conclusions: 

(1) A suitable value of Z depending on the tempera­
ture and the density would give a better g than is 
obtained by Z = 0 or Z = — 1. 

(2) The g's computed using the LJ (6-12) potential 
with the constants due to Beattie et at. and the CHNC 
equation are in good agreement with the experimental 
curves at temperatures close to the critical temperature. 

(3) The experimental distribution curve near the 
critical temperature (210°K) gives too high a first 
peak. The computed curve is probably more reliable 
than the experimental curve. 

(4) The computed g's are not affected appreciably 
by a change in the range of integration for solving the 
integral equations provided it is greater than 20 A. The 
compressibilities are affected very strongly by a change 

in the range of integration. The longer the range, the 
higher the computed compressibility. The range of 
integration after which the compressibility will not be 
affected appreciably is rather too large to be practically 
feasible for solving the integral equations numerically. 

(5) The effect on the computed g's of changing the 
long-range part of the pair potential is small. The first 
peak rises with an increase in the value of \/k. We could 
not find the CHNC case-I kind of solution when the 
value of \/k was increased to 300°K. 

(6) The major cause of the irregularities in the ex­
perimental distribution functions is inherent in the 
experimentally measured intensity curves and not the 
truncation error. 

(7) There is very strong indication by the experi­
mental g's that the irregularities in the experimental 
g's are due to the actual presence of structure in the 
liquid. 
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APPENDIX 

The Lennard-Jones and the Guggenheim-McGlashan 
potentials for krypton are given below. 

(i) The LJ potential is given by 

* = 4 e [ ( a / r ) » - ( * A ) 6 ] , (Al) 

where the constants used are11 

€/*=172.70°K, 

a=3 .59 lA , 

The value of r where the potential energy is minimum 
is ro given by 

ro=4.030 A. 

(ii) The GM potential is given by 

<j)(r)= oo, r<d, 

(r-fo)2 (r-fo)3 (2r0 -r) 

(A2) 

*V r0* ro 

36 A. A. Khan (to be published). 0(r) = - \ ( r o / r ) 6 , r£n. 

ri^r^r2, (A3) 

(A4) 
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The constants are 

e/£=191.1°K; K/k = 62AXl02 °K, 

a/k=27.2X103°K; r0=4.077A, 

X/£=208.5°K; 

d=3A A; ri=3.8A, 

r2=4.4A; r3=5.8A. 

The derivatives of the GM potential used in these 
computations are given below. 

d<j>/dr=0, r£3.3k. 

d(j)/dr is given in the tabular form (Table IV) for r 
lying between 3.4 and 5.8 A, 

TABLE IV. The potential function 0 and its derivatives 
between 3.3 and 5.7 A. 

d<t> 1251X(4.077)6 

dr rn 
r>5.8A. 

r 

3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4.4 
4.5 

0(°K) 

00 

0 
-37.00 
-75.00 

-114.00 
-153.18 
-177.02 
-188.69 
-190.91 
-186.14 
-176.64 
-164.39 
-151.16 

0' 

0 
-382.00 
-382.00 
-382.00 
-382.00 
-308.74 
-172.82 
-65.13 

16.64 
74.87 

111.92 
130.16 
131.95 

r(i) 

4.6 
4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 

*(°K) 

-138.47 
-125.00 
-112.00 
-99.00 
-86.00 
-73.00 
-61.00 
-51.00 
-43.00 
-39.00 
-31.50 
-27.80 

0 ' 

119.65 
128.33 
128.33 
128.33 
128.33 
128.33 
103.00 
98.00 
79.00 
59.11 
44.61 
33.33 

Table IV gives the potential function <j> and its de­
rivatives between 3.3 and 5.8 A. 


